A. Given: \overline{PV} and \overline{SO} intersect at E

 $\angle R \cong \angle PEO$

Prove: $\angle R \cong \angle SEV$

Statements	Reasons
\overline{PV} and \overline{SO} intersect at E	Given
∠PEO vertical to ∠SEV	Non-adjacent angles formed by 2 intersecting lines are vertical
∠PEO ≅ ∠SEV	Vertical angles are congruent
$\angle R \cong \angle PEO$	Given
$\angle R \cong \angle SEV$	Transitive 1

B. Given: $\overline{\mathit{BFAD}}$

 $\angle DAC \cong \angle BAC$

Prove: $\overline{CA} \perp \overline{BD}$

Statements	Reasons
BFAD	Given
∠CAB supp. to ∠CAD	Adjacent angles formed by 2 intersecting lines are supplementary
$\angle DAC \cong \angle BAC$	Given
$\angle CAB$ and $\angle CAD$ are Rt. \angle 's	Angles that are congruent and supplementary are both right
$\overline{CA}\perp \overline{BD}$	Perpendicular lines meet at right angles

C. Given: \overline{AE} bisects $\angle BCD$ Prove: $\angle BCE \cong \angle DCE$

Statements	Reasons
AE bisects ∠BCD	Given
∠BCA ≅ ∠DCA	Angle bisector divides an angle into 2 congruent angles
∠DCA supp. to ∠DCE	Adjacent angles formed by 2 intersecting lines are supplementary
∠BCA sup to ∠BCE	Adjacent angles formed by 2 intersecting lines are supplementary
∠BCE ≅ ∠DCE	Congruent angles have congruent supplements

D. Given: \overline{PV} bisects \overline{SO} at E

 $\overline{PR}\cong \overline{SE}$

Prove: $\overline{PR} \cong \overline{EO}$

Statements	Reasons
PV bisects SO at E	Given
E midpoint of SO	Segment bisector cuts through the midpoint of a segment
$\overline{SE} \cong \overline{OE}$	Midpoint divides a segment into two congruent segments
$\overline{PR} \cong \overline{SE}$	Given
$\overline{PR} \cong \overline{EO}$	Transitive